• Follow us
CGSI
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • In The News
    • Videos
    • CGSI 2024
    • CGSI 2023
    • CGSI 2022
    • CGSI 2021 & CGSI RECOMB
    • CGSI 2020 & CGSI RECOMB
    • CGSI 2019
    • CGWI 2019
    • CGSI 2018
    • CGWI 2018
    • CGSI 2017
    • CGSI 2016
  • FAQ
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • - In The News
    • - Videos
    • - CGSI 2024
    • - CGSI 2023
    • - CGSI 2022
    • - CGSI 2021 & CGSI RECOMB
    • - CGSI 2020 & CGSI RECOMB
    • - CGSI 2019
    • - CGWI 2019
    • - CGSI 2018
    • - CGWI 2018
    • - CGSI 2017
    • - CGSI 2016
  • FAQ

Saharon Rosset | Quality preserving databases for statistically sound “big data” analysis on public databases | CGSI 2017

Date:July 17, 2017Posted By:Duke Hong
Saharon Rosset | Quality preserving databases for statistically sound “big data” analysis on public databases | CGSI 2017

07/17/2017 @ 10:30-11:15
Research Talk by Saharon Rosset
Quality preserving databases for statistically sound “big data” analysis on public databases
1. Rosset, S., Aharoni, E. and Neuvirth, H., 2014. Novel Statistical Tools for Management of Public Databases Facilitate Community‐Wide Replicability and Control of False Discovery. Genetic epidemiology, 38(5), pp.477-481.
2. Aharoni, E. and Rosset, S., 2014. Generalized α‐investing: definitions, optimality results and application to public databases. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(4), pp.771-794.
3. Aharoni, E., Neuvirth, H. and Rosset, S., 2011. The quality preserving database: A computational framework for encouraging collaboration, enhancing power and controlling false discovery. IEEE/ACM transactions on computational biology and bioinformatics, 8(5), pp.1431-1437.

Prev Post
Next Post

Funded by NIH since 2016 – Grant GM135043

IN PARTNERSHIP WITH EDMOND J. SAFRA CENTER FOR BIOINFORMATICS:

AIM AHEAD
Developed by Think Up Themes Ltd. Powered by WordPress.