• Follow us
CGSI
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • In The News
    • Videos
    • CGSI 2022
    • CGSI 2021/RECOMB
    • CGSI 2021
    • CGSI 2020
    • CGSI 2020/RECOMB
    • CGSI 2019
    • CGWI 2019
    • CGSI 2018
    • CGWI 2018
    • CGSI 2017
    • CGSI 2016
  • FAQ
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • - In The News
    • - Videos
    • - CGSI 2022
    • - CGSI 2021/RECOMB
    • - CGSI 2021
    • - CGSI 2020
    • - CGSI 2020/RECOMB
    • - CGSI 2019
    • - CGWI 2019
    • - CGSI 2018
    • - CGWI 2018
    • - CGSI 2017
    • - CGSI 2016
  • FAQ

Jo Hardin | Prediction intervals for random forests with applications to high throughput data | CGSI 2017

Date:July 18, 2017Posted By:Duke Hong
Jo Hardin | Prediction intervals for random forests with applications to high throughput data | CGSI 2017

07/18/2017 @ 09:15-10:00
Research Talk by Jo Hardin
Prediction intervals for random forests with applications to high throughput data
1. Chen, X. and Ishwaran, H., 2012. Random forests for genomic data analysis. Genomics, 99(6), pp.323-329.
2. Pang, H., Lin, A., Holford, M., Enerson, B.E., Lu, B., Lawton, M.P., Floyd, E. and Zhao, H., 2006. Pathway analysis using random forests classification and regression. Bioinformatics, 22(16), pp.2028-2036.
3. Zhang, J., Hadj-Moussa, H. and Storey, K.B., 2016. Current progress of high-throughput microRNA differential expression analysis and random forest gene selection for model and non-model systems: an R implementation. Journal of Integrative Bioinformatics, 13(5), p.306.

Prev Post
Next Post

Funded by NIH since 2016 – Grant GM112625

IN PARTNERSHIP WITH EDMOND J. SAFRA CENTER FOR BIOINFORMATICS:

AND THE ARTIFICIAL INTELLIGENCE/MACHINE LEARNING CONSORTIUM TO ADVANCE HEALTH EQUITY AND RESEARCHER DIVERSITY (AIM-AHEAD):

AIM AHEAD
Tweets by UCLA_CGSI
Developed by Think Up Themes Ltd. Powered by WordPress.