• Follow us
CGSI
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • In The News
    • Videos
    • CGSI 2022
    • CGSI 2021/RECOMB
    • CGSI 2021
    • CGSI 2020
    • CGSI 2020/RECOMB
    • CGSI 2019
    • CGWI 2019
    • CGSI 2018
    • CGWI 2018
    • CGSI 2017
    • CGSI 2016
  • FAQ
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • - In The News
    • - Videos
    • - CGSI 2022
    • - CGSI 2021/RECOMB
    • - CGSI 2021
    • - CGSI 2020
    • - CGSI 2020/RECOMB
    • - CGSI 2019
    • - CGWI 2019
    • - CGSI 2018
    • - CGWI 2018
    • - CGSI 2017
    • - CGSI 2016
  • FAQ

David Tse | Maximally correlation and principal component analysis | CGSI 2017

Date:July 17, 2017Posted By:Duke Hong
David Tse | Maximally correlation and principal component analysis | CGSI 2017

07/17/2017 @ 09:15-10:00
Research Talk by David Tse
Maximally correlation and principal component analysis
1. Rényi, A., 1959. On measures of dependence. Acta mathematica hungarica, 10(3-4), pp.441-451.
2. Feizi, S. and Tse, D., 2017. Maximally Correlated Principle Component Analysis. arXiv preprint arXiv:1702.05471.

Prev Post
Next Post

Funded by NIH since 2016 – Grant GM112625

IN PARTNERSHIP WITH EDMOND J. SAFRA CENTER FOR BIOINFORMATICS:

AND THE ARTIFICIAL INTELLIGENCE/MACHINE LEARNING CONSORTIUM TO ADVANCE HEALTH EQUITY AND RESEARCHER DIVERSITY (AIM-AHEAD):

AIM AHEAD
Tweets by UCLA_CGSI
Developed by Think Up Themes Ltd. Powered by WordPress.