• Follow us
CGSI
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • In The News
    • Videos
    • CGSI 2022
    • CGSI 2021/RECOMB
    • CGSI 2021
    • CGSI 2020
    • CGSI 2020/RECOMB
    • CGSI 2019
    • CGWI 2019
    • CGSI 2018
    • CGWI 2018
    • CGSI 2017
    • CGSI 2016
  • FAQ
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • - In The News
    • - Videos
    • - CGSI 2022
    • - CGSI 2021/RECOMB
    • - CGSI 2021
    • - CGSI 2020
    • - CGSI 2020/RECOMB
    • - CGSI 2019
    • - CGWI 2019
    • - CGSI 2018
    • - CGWI 2018
    • - CGSI 2017
    • - CGSI 2016
  • FAQ

Jennifer Listgarten | Machine learning for CRISPR gene editing | CGSI 2017

Date:July 10, 2017Posted By:Duke Hong
Jennifer Listgarten | Machine learning for CRISPR gene editing | CGSI 2017

07/10/2017 @ 13:30-14:15
Research Talk by Jennifer Listgarten
Machine learning for CRISPR gene editing
1. Fusi, N., Smith, I., Doench, J. and Listgarten, J., 2015. In silico predictive modeling of CRISPR/Cas9 guide efficiency. bioRxiv, p.021568.
2. Listgarten, J., Weinstein, M., Elibol, M., Hoang, L., Doench, J. and Fusi, N., 2016. Predicting off-target effects for end-to-end CRISPR guide design. bioRxiv, p.078253.
3. Doench, J.G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E.W., Donovan, K.F., Smith, I., Tothova, Z., Wilen, C., Orchard, R. and Virgin, H.W., 2016. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature biotechnology.

Prev Post
Next Post

Funded by NIH since 2016 – Grant GM112625

IN PARTNERSHIP WITH EDMOND J. SAFRA CENTER FOR BIOINFORMATICS:

AND THE ARTIFICIAL INTELLIGENCE/MACHINE LEARNING CONSORTIUM TO ADVANCE HEALTH EQUITY AND RESEARCHER DIVERSITY (AIM-AHEAD):

AIM AHEAD
Tweets by UCLA_CGSI
Developed by Think Up Themes Ltd. Powered by WordPress.