• Follow us
CGSI
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • In The News
    • Videos
    • CGSI 2022
    • CGSI 2021/RECOMB
    • CGSI 2021
    • CGSI 2020
    • CGSI 2020/RECOMB
    • CGSI 2019
    • CGWI 2019
    • CGSI 2018
    • CGWI 2018
    • CGSI 2017
    • CGSI 2016
  • FAQ
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • - In The News
    • - Videos
    • - CGSI 2022
    • - CGSI 2021/RECOMB
    • - CGSI 2021
    • - CGSI 2020
    • - CGSI 2020/RECOMB
    • - CGSI 2019
    • - CGWI 2019
    • - CGSI 2018
    • - CGWI 2018
    • - CGSI 2017
    • - CGSI 2016
  • FAQ

Nikita Alexeev: Estimation of the rate of transpositions and the true evolutionary distance

Date:July 7, 2017Posted By:Duke Hong
Nikita Alexeev: Estimation of the rate of transpositions and the true evolutionary distance

07/07/2017 @ 14:30-15:00
Retreat Research Talk by Nikita Alexeev
Estimation of the rate of transpositions and the true evolutionary distance
1. Alexeev, N. and Alekseyev, M.A., 2017. Estimation of the true evolutionary distance under the fragile breakage model. BMC Genomics, 18(4), p.356.
2. Alexeev, N., Aidagulov, R. and Alekseyev, M.A., 2015. A computational method for the rate estimation of evolutionary transpositions. arXiv preprint arXiv:1501.07546.
3. Yancopoulos, S., Attie, O. and Friedberg, R., 2005. Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics, 21(16), pp.3340-3346.
4. Biller, P., Guéguen, L., Knibbe, C. and Tannier, E., 2016. Breaking good: accounting for fragility of genomic regions in rearrangement distance estimation. Genome biology and evolution, 8(5), pp.1427-1439.
5. Lin, Y. and Moret, B.M., 2008. Estimating true evolutionary distances under the DCJ model. Bioinformatics, 24(13), pp.i114-i122.
6. Erdos, P. and Rényi, A., 1960. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1), pp.17-60.

Prev Post
Next Post

Funded by NIH since 2016 – Grant GM112625

IN PARTNERSHIP WITH EDMOND J. SAFRA CENTER FOR BIOINFORMATICS:

AND THE ARTIFICIAL INTELLIGENCE/MACHINE LEARNING CONSORTIUM TO ADVANCE HEALTH EQUITY AND RESEARCHER DIVERSITY (AIM-AHEAD):

AIM AHEAD
Tweets by UCLA_CGSI
Developed by Think Up Themes Ltd. Powered by WordPress.