• Follow us
CGSI
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • In The News
    • Videos
    • CGSI 2022
    • CGSI 2021/RECOMB
    • CGSI 2021
    • CGSI 2020
    • CGSI 2020/RECOMB
    • CGSI 2019
    • CGWI 2019
    • CGSI 2018
    • CGWI 2018
    • CGSI 2017
    • CGSI 2016
  • FAQ
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • - In The News
    • - Videos
    • - CGSI 2022
    • - CGSI 2021/RECOMB
    • - CGSI 2021
    • - CGSI 2020
    • - CGSI 2020/RECOMB
    • - CGSI 2019
    • - CGWI 2019
    • - CGSI 2018
    • - CGWI 2018
    • - CGSI 2017
    • - CGSI 2016
  • FAQ

Jason Ernst | Functional Genomics Time-series Analysis | CGSI 2016

Date:August 11, 2016Posted By:Duke Hong
Jason Ernst | Functional Genomics Time-series Analysis | CGSI 2016

08/11/2016 @ 10:30-11:30
Tutorial by Jason Ernst
Functional Genomics Time-series Analysis
1. Ernst, J., Nau, G.J. and Bar-Joseph, Z., 2005. Clustering short time series gene expression data. Bioinformatics, 21(suppl 1), pp.i159-i168.
2. Ernst, J. and Bar-Joseph, Z., 2006. STEM: a tool for the analysis of short time series gene expression data. BMC bioinformatics, 7(1), p.191.
3. Ernst, J., Vainas, O., Harbison, C.T., Simon, I. and Bar‐Joseph, Z., 2007. Reconstructing dynamic regulatory maps. Molecular Systems Biology, 3(1), p.74.
4. Bar-Joseph, Z., Gitter, A. and Simon, I., 2012. Studying and modelling dynamic biological processes using time-series gene expression data. Nature Reviews Genetics, 13(8), pp.552-564.

Prev Post
Next Post

Funded by NIH since 2016 – Grant GM112625

IN PARTNERSHIP WITH EDMOND J. SAFRA CENTER FOR BIOINFORMATICS:

AND THE ARTIFICIAL INTELLIGENCE/MACHINE LEARNING CONSORTIUM TO ADVANCE HEALTH EQUITY AND RESEARCHER DIVERSITY (AIM-AHEAD):

AIM AHEAD
Tweets by UCLA_CGSI
Developed by Think Up Themes Ltd. Powered by WordPress.