• Follow us
CGSI
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • In The News
    • Videos
    • CGSI 2022
    • CGSI 2021/RECOMB
    • CGSI 2021
    • CGSI 2020
    • CGSI 2020/RECOMB
    • CGSI 2019
    • CGWI 2019
    • CGSI 2018
    • CGWI 2018
    • CGSI 2017
    • CGSI 2016
  • FAQ
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • - In The News
    • - Videos
    • - CGSI 2022
    • - CGSI 2021/RECOMB
    • - CGSI 2021
    • - CGSI 2020
    • - CGSI 2020/RECOMB
    • - CGSI 2019
    • - CGWI 2019
    • - CGSI 2018
    • - CGWI 2018
    • - CGSI 2017
    • - CGSI 2016
  • FAQ

William (Xiaoquan) Wen | Bayesian Statistics and its Application to Integrative Statistical Genomics | CGSI 2016

Date:July 18, 2016Posted By:Duke Hong
William (Xiaoquan) Wen | Bayesian Statistics and its Application to Integrative Statistical Genomics | CGSI 2016

07/18/2016 @ 10:00-10:45
Tutorial by William (Xiaoquan) Wen
Bayesian Statistics and its Application to Integrative Statistical Genomics
1. Stephens, M. and Balding, D.J., 2009. Bayesian statistical methods for genetic association studies. Nature Reviews Genetics, 10(10), pp.681-690.
2. Wakefield, J., 2009. Bayes factors for genome‐wide association studies: comparison with P‐values. Genetic epidemiology, 33(1), pp.79-86.
3. Wen, X., Lee, Y., Luca, F. and Pique-Regi, R., 2016. Efficient integrative multi-SNP association analysis via Deterministic Approximation of Posteriors. The American Journal of Human Genetics, 98(6), pp.1114-1129.
4. Wen, X., 2016. Molecular QTL discovery incorporating genomic annotations using Bayesian false discovery rate control. The Annals of Applied Statistics, 10(3), pp.1619-1638.

Next Post

Funded by NIH since 2016 – Grant GM112625

IN PARTNERSHIP WITH EDMOND J. SAFRA CENTER FOR BIOINFORMATICS:

AND THE ARTIFICIAL INTELLIGENCE/MACHINE LEARNING CONSORTIUM TO ADVANCE HEALTH EQUITY AND RESEARCHER DIVERSITY (AIM-AHEAD):

AIM AHEAD
Tweets by UCLA_CGSI
Developed by Think Up Themes Ltd. Powered by WordPress.