• Follow us
CGSI
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • In The News
    • Videos
    • CGSI 2024
    • CGSI 2023
    • CGSI 2022
    • CGSI 2021 & CGSI RECOMB
    • CGSI 2020 & CGSI RECOMB
    • CGSI 2019
    • CGWI 2019
    • CGSI 2018
    • CGWI 2018
    • CGSI 2017
    • CGSI 2016
  • FAQ
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • - In The News
    • - Videos
    • - CGSI 2024
    • - CGSI 2023
    • - CGSI 2022
    • - CGSI 2021 & CGSI RECOMB
    • - CGSI 2020 & CGSI RECOMB
    • - CGSI 2019
    • - CGWI 2019
    • - CGSI 2018
    • - CGWI 2018
    • - CGSI 2017
    • - CGSI 2016
  • FAQ

Marzia Cremona: Functional data analysis testing and linear modeling for high-resolution “omics” data

Date:July 7, 2017Posted By:Duke Hong
Marzia Cremona: Functional data analysis testing and linear modeling for high-resolution “omics” data

07/07/2017 @ 09:10-09:40
Retreat Research Talk by Marzia Cremona
Functional data analysis testing and linear modeling for high-resolution “omics” data
1. Campos-Sánchez, R., Cremona, M.A., Pini, A., Chiaromonte, F. and Makova, K.D., 2016. Integration and fixation preferences of human and mouse endogenous retroviruses uncovered with functional data analysis. PLoS Comput Biol, 12(6), p.e1004956.
2. Cremona, M.A., Campos-Sánchez, R., Pini, A., Vantini, S., Makova, K.D. and Chiaromonte, F., 2017. Functional data analysis of “Omics” data: how does the genomic landscape influence integration and fixation of endogenous retroviruses?. In Functional Statistics and Related Fields (pp. 87-93). Springer, Cham.
3. Cremona, Pini, Chiaromonte, Vantini (2017). IWTomics: Interval-Wise Testing for Omics Data. R package version 1.0.0.

Prev Post
Next Post

Funded by NIH since 2016 – Grant GM135043

IN PARTNERSHIP WITH EDMOND J. SAFRA CENTER FOR BIOINFORMATICS:

AIM AHEAD
Developed by Think Up Themes Ltd. Powered by WordPress.