• Follow us
CGSI
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • In The News
    • Videos
    • CGSI 2024
    • CGSI 2023
    • CGSI 2022
    • CGSI 2021 & CGSI RECOMB
    • CGSI 2020 & CGSI RECOMB
    • CGSI 2019
    • CGWI 2019
    • CGSI 2018
    • CGWI 2018
    • CGSI 2017
    • CGSI 2016
  • FAQ
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • - In The News
    • - Videos
    • - CGSI 2024
    • - CGSI 2023
    • - CGSI 2022
    • - CGSI 2021 & CGSI RECOMB
    • - CGSI 2020 & CGSI RECOMB
    • - CGSI 2019
    • - CGWI 2019
    • - CGSI 2018
    • - CGWI 2018
    • - CGSI 2017
    • - CGSI 2016
  • FAQ

Lior Pachter | Differential analysis of count data in genomics | CGSI 2017

Date:July 13, 2017Posted By:Duke Hong
Lior Pachter | Differential analysis of count data in genomics | CGSI 2017

07/13/2017 @ 13:00-13:45
Tutorial by Lior Pachter
Differential analysis of count data in genomics
1. Anders, S. and Huber, W., 2010. Differential expression analysis for sequence count data. Genome biology, 11(10), p.R106.
2. Soneson, C., Love, M.I. and Robinson, M.D., 2015. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research, 4.
3. Pimentel, H., Bray, N.L., Puente, S., Melsted, P. and Pachter, L., 2017. Differential analysis of RNA-Seq incorporating quantification uncertainty. Nature Methods.

Prev Post
Next Post

Funded by NIH since 2016 – Grant GM135043

IN PARTNERSHIP WITH EDMOND J. SAFRA CENTER FOR BIOINFORMATICS:

AIM AHEAD
Developed by Think Up Themes Ltd. Powered by WordPress.