• Follow us
CGSI
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • In The News
    • Videos
    • CGSI 2022
    • CGSI 2021/RECOMB
    • CGSI 2021
    • CGSI 2020
    • CGSI 2020/RECOMB
    • CGSI 2019
    • CGWI 2019
    • CGSI 2018
    • CGWI 2018
    • CGSI 2017
    • CGSI 2016
  • FAQ
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • - In The News
    • - Videos
    • - CGSI 2022
    • - CGSI 2021/RECOMB
    • - CGSI 2021
    • - CGSI 2020
    • - CGSI 2020/RECOMB
    • - CGSI 2019
    • - CGWI 2019
    • - CGSI 2018
    • - CGWI 2018
    • - CGSI 2017
    • - CGSI 2016
  • FAQ

Lior Pachter | Differential analysis of count data in genomics | CGSI 2017

Date:July 13, 2017Posted By:Duke Hong
Lior Pachter | Differential analysis of count data in genomics | CGSI 2017

07/13/2017 @ 13:00-13:45
Tutorial by Lior Pachter
Differential analysis of count data in genomics
1. Anders, S. and Huber, W., 2010. Differential expression analysis for sequence count data. Genome biology, 11(10), p.R106.
2. Soneson, C., Love, M.I. and Robinson, M.D., 2015. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research, 4.
3. Pimentel, H., Bray, N.L., Puente, S., Melsted, P. and Pachter, L., 2017. Differential analysis of RNA-Seq incorporating quantification uncertainty. Nature Methods.

Prev Post
Next Post

Funded by NIH since 2016 – Grant GM112625

IN PARTNERSHIP WITH EDMOND J. SAFRA CENTER FOR BIOINFORMATICS:

AND THE ARTIFICIAL INTELLIGENCE/MACHINE LEARNING CONSORTIUM TO ADVANCE HEALTH EQUITY AND RESEARCHER DIVERSITY (AIM-AHEAD):

AIM AHEAD
Tweets by UCLA_CGSI
Developed by Think Up Themes Ltd. Powered by WordPress.