• Follow us
CGSI
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • In The News
    • Videos
    • CGSI 2022
    • CGSI 2021/RECOMB
    • CGSI 2021
    • CGSI 2020
    • CGSI 2020/RECOMB
    • CGSI 2019
    • CGWI 2019
    • CGSI 2018
    • CGWI 2018
    • CGSI 2017
    • CGSI 2016
  • FAQ
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • - In The News
    • - Videos
    • - CGSI 2022
    • - CGSI 2021/RECOMB
    • - CGSI 2021
    • - CGSI 2020
    • - CGSI 2020/RECOMB
    • - CGSI 2019
    • - CGWI 2019
    • - CGSI 2018
    • - CGWI 2018
    • - CGSI 2017
    • - CGSI 2016
  • FAQ

Fabio Vandin | Computational methods for survival analysis in genome-wide cancer studies | CGSI 2017

Date:July 24, 2017Posted By:Duke Hong
Fabio Vandin | Computational methods for survival analysis in genome-wide cancer studies | CGSI 2017

07/24/2017 @ 13:30-14:15
Research Talk by Fabio Vandin
Computational methods for survival analysis in genome-wide cancer studies
1. Vandin, F., Upfal, E. and Raphael, B.J., 2011. Algorithms for detecting significantly mutated pathways in cancer. Journal of Computational Biology, 18(3), pp.507-522.
2. Raphael, B.J., Dobson, J.R., Oesper, L. and Vandin, F., 2014. Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine. Genome medicine, 6(1), p.5.
3. Leiserson, M.D., Vandin, F., Wu, H.T., Dobson, J.R., Eldridge, J.V., Thomas, J.L., Papoutsaki, A., Kim, Y., Niu, B., McLellan, M. and Lawrence, M.S., 2015. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nature genetics, 47(2), pp.106-114.
4. Vandin, F., Papoutsaki, A., Raphael, B.J. and Upfal, E., 2015. Accurate computation of survival statistics in genome-wide studies. PLoS Comput Biol, 11(5), p.e1004071.
5. Hansen, T. and Vandin, F., 2016. Finding Mutated Subnetworks Associated with Survival in Cancer. arXiv preprint arXiv:1604.02467.

Prev Post
Next Post

Funded by NIH since 2016 – Grant GM112625

IN PARTNERSHIP WITH EDMOND J. SAFRA CENTER FOR BIOINFORMATICS:

AND THE ARTIFICIAL INTELLIGENCE/MACHINE LEARNING CONSORTIUM TO ADVANCE HEALTH EQUITY AND RESEARCHER DIVERSITY (AIM-AHEAD):

AIM AHEAD
Tweets by UCLA_CGSI
Developed by Think Up Themes Ltd. Powered by WordPress.