• Follow us
CGSI
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • In The News
    • Videos
    • CGSI 2022
    • CGSI 2021/RECOMB
    • CGSI 2021
    • CGSI 2020
    • CGSI 2020/RECOMB
    • CGSI 2019
    • CGWI 2019
    • CGSI 2018
    • CGWI 2018
    • CGSI 2017
    • CGSI 2016
  • FAQ
  • Home
  • About
  • Schedule
  • Application
  • Resources
    • - In The News
    • - Videos
    • - CGSI 2022
    • - CGSI 2021/RECOMB
    • - CGSI 2021
    • - CGSI 2020
    • - CGSI 2020/RECOMB
    • - CGSI 2019
    • - CGWI 2019
    • - CGSI 2018
    • - CGWI 2018
    • - CGSI 2017
    • - CGSI 2016
  • FAQ

Alexander Schönhuth | Snakemake: Reproducible and Scalable Data Analysis | CGSI 2016

Date:July 19, 2016Posted By:Duke Hong
Alexander Schönhuth | Snakemake: Reproducible and Scalable Data Analysis | CGSI 2016

07/19/16 @ 09:15-10:00
Tutorial by Alexander Schönhuth
Snakemake: Reproducible and Scalable Data Analysis
1. Köster, J. and Rahmann, S., 2012. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics, 28(19), pp.2520-2522.
2. Köster, J., 2014. Parallelization, scalability, and reproducibility in next generation sequencing analysis (Doctoral dissertation).

Prev Post
Next Post

Funded by NIH since 2016 – Grant GM112625

IN PARTNERSHIP WITH EDMOND J. SAFRA CENTER FOR BIOINFORMATICS:

AND THE ARTIFICIAL INTELLIGENCE/MACHINE LEARNING CONSORTIUM TO ADVANCE HEALTH EQUITY AND RESEARCHER DIVERSITY (AIM-AHEAD):

AIM AHEAD
Tweets by UCLA_CGSI
Developed by Think Up Themes Ltd. Powered by WordPress.